Physics Recap

Temperature and Depth

5. A 10 L bailout is charged to 200 bar. The temperature reaches $36^{\circ} \mathrm{C}$. After lying on deck for half an hour the temperature drops to $22^{\circ} \mathrm{C}$. What will be the pressure reading? (Add 273 for centigrade to kelvin)

P2	$=\frac{\text { P1 } \times \text { T2 }}{\text { T1 }}$
P1	$=200$ bar
T2	$=22^{\circ} \mathrm{C}+273^{\mathrm{K}}=295$ kelvin
T1	$=36^{\circ} \mathrm{C}+273^{\mathrm{K}}=309$ kelvin
P2	$=\frac{200 \times 295}{309}=190.9$ bar

NB: When calculating temperatures changes with High Pressure gas, you do not need to work in ABSOLUTE, but if you do, you will of course be right.

Physics Recap temperature \& Depth

- After filling a bail out bottle to 220 Bar it reaches a temperature of $29^{\circ} \mathrm{C}$. What pressure will it be at $7^{\circ} \mathrm{C}$?

$$
\begin{aligned}
& \text { Charles Law }=P 2=\frac{P 1 \times \text { T2 }}{\mathrm{T} 1} \\
& \text { So }=P 1=220 \mathrm{bar}, \quad \mathbf{T} 1=\left(29^{\circ} \mathrm{C}+273 \text { Kelvin }\right)=302, \quad \mathrm{~T} 2=\left(5^{\circ} \mathrm{C}+273 \text { Kelvin }\right)=278 \\
& \text { So P2 }=\quad \frac{220 \mathrm{bar} \times 278}{302}
\end{aligned}
$$

- After filling a bail out bottle to 200 Bar it reaches a temperature of $30^{\circ} \mathrm{C}$. What pressure will it be at $4^{\circ} \mathrm{C}$? Charles Law $=\mathbf{P 2}=\mathbf{P} 1 \times \mathbf{T} \mathbf{~} \div \mathbf{T 1}$

$$
\begin{aligned}
& \mathrm{P} 1=200=303 \\
& \mathrm{~T} 1=30+273=277 \\
& \mathrm{~T} 2=4+273=303 \times 277 \div 303 \\
& \mathrm{P} 2=200 \times \\
& =182.8
\end{aligned}
$$

Physics Recap Temperature \& Depth

- After filling to 3500 psi a bail-out bottle is at a temperature of $40^{\circ} \mathrm{C}$. What will the be the pressure when the temperature drops to $4^{\circ} \mathrm{C}$

```
Charles Law = P2 = P1 x T2 \div T1
P1 = 3500psi = 238.09ata
T1 = 40 + 273k = 313
T2 = 4+273k = 277
P2 = 238.09 x 277 \div313
    = 210.70ata
    x 14.7
= 3097psi
```

