Physics Recap
 Gas Consumption

Physics Recap gas consumption

- Calculate the gas consumption a divers working at 65 msw for a period of 1 hour 25 min .
$85 \min \times 7.5$ bar(a) $\times 35$ LPM $\div 1000=22.312$ m 3
- What is the gas consumption of a two dives working at 97 msw for a duration of 1 hour, 7 minutes?

Open circuit consumption	$=$	35 lpm per diver at the surface
At depth, consumption	$=$	$\mathbf{7 0 L P M} \times 10.7 \mathrm{bar}(\mathrm{a})$
	$=$	749 LPM
$\mathbf{6 7}$ minutes $\times 749 \mathrm{LPM}$	$=$	50,183 litres
Which is	$=$	$\mathbf{5 0 . 1 8 3} \mathbf{~ m}^{\mathbf{3}}$

Physics Recap gas consumption

4. A diver has a bailout with a volume of 9 litre, and pressure of 150 bar. How much gas does he have? How long will it last him at 50 m ?

Therefore answer =
5 minutes 1 seconds

Physics Recap gas consumption

- Two 12 litre bail out bottles are pressurised to 210 Bar. If the diver is working at 75 msw , what volume of gas is available to him in an emergency? and how long will it last him?

So $\quad 13 \min 30$ secs

Physics Recap gas consumption

4. A bail out bottle (вОв) has a volume of 15 litres and a pressure of 195 Bar. If the diver is working at 90 msw , what volume of gas is available to him in an emergency? and how long will it last him?
$195 b a r^{\operatorname{bar}} 1_{\mathrm{bar}(\mathrm{HP})}-10 \operatorname{bar(A)}=175_{\mathrm{bar}} \times 15_{\mathrm{Lt}}=\mathbf{2 6 2 5} \mathrm{Lts}$

Gas Consumption $=$		40 LPM $\times 10_{\operatorname{Bar}(\mathrm{A})}=400 \mathrm{LPM}$
Gas available $=$	$2625 \mathrm{Lts} \div 40 \mathrm{LPM}=6.56 \mathrm{mins}$	

So $6 \min 33_{\text {secs }}$

