Physics Recap
Establishing a Partial Pressure

Physics Recap Establishing a Partial Pressure

- You have to compress a chamber to 36 msw using 12% and 2% heliox, you want $400 \mathrm{mbs}_{\mathrm{ppO}}^{2}$ on arrival. To what depth would you blowdown using the 12% ?

```
(pO2 required - Initial pO2) - (Depth in MSW x Low%) \div (High % - Low %)
    (400mbar - 210mbar) - (36msw x 2%) 
        190mbar - 72 
        = 11.8msw (on 12% O O
```


Physics Recap Establishing a Partial Pressure

- You have to pressurise 12 divers to 45 msw in a $35 \mathrm{~m}^{3}$ chamber, giving a pO_{2} of 450 mbar. You have 16/84 and 4/96 heliox mixes available.
To what depth would you pressurise using the 16%, what will be the $\% \mathrm{O}_{2}$ and how much mixed gas, in total, will you use?

$$
\begin{aligned}
& \frac{(450 \mathrm{mb}-210 \mathrm{mb})-(45 \mathrm{msw} \times 4 \%)}{(16 \%-4 \%)} \text { so } \frac{240 \mathrm{mb}-180}{12 \%}=5.0 \mathrm{msw} \text { on } 16 \% \\
& \mathrm{O}_{2} \%=\frac{\mathrm{pO} 2 \times 100}{\mathrm{AP}} \text { so } \frac{0.45 \mathrm{mb} \times 100}{5.5 \mathrm{~b}(\mathrm{a})}=\mathbf{8 . 1 8 \%} \text { (Daltons Law) } \\
& \text { Gas used }=P \times V \text { so } 4.5 \text { bar } \times 35 \mathrm{~m}^{3}=157.5 \mathrm{~m}^{3} \text { of mixed gas }
\end{aligned}
$$

