Physics Recap

Calculating a Percentage

- A chamber is at 75 msw and has a pO_{2} of 425 mbar . What is the $\mathrm{O}_{2} \%$?

$$
\begin{aligned}
\% & =\mathrm{ppO}_{2} \times 100 \div \mathrm{AP} \\
& =0.425 \mathrm{bar} \times 100 \div 8.5 \operatorname{bar}(\mathrm{a}) \\
& =5 \%
\end{aligned}
$$

How about we also calculate the pp If the chamber is vented to 35 msw what will be the ppO_{2} ?

$$
\begin{aligned}
\% & \times \mathrm{AP}
\end{aligned} \div 100 \quad \begin{aligned}
& \\
& 5.0 \%
\end{aligned} \mathrm{x} 4.5 \mathrm{~b}(\mathrm{a}) \div 100 \quad=\quad \mathbf{2 2 5} \text { bar }
$$

Physics Recap calculating a Percentage

- A chamber is at 105 msw and has a pO_{2} of 400 mbar , what is the $\mathrm{O}_{2} \%$?

$$
\begin{aligned}
\% & =\mathrm{ppO}_{2} \times 100 \div \mathrm{AP} \\
& =0.400 \mathrm{bar} \times 100 \div 11.5 \text { bar(a) } \\
& =3.47 \%
\end{aligned}
$$

How about we also calculate the pp If the chamber is vented to 55 msw what will be the ppO_{2} ?

```
    % AP }\div10
3.47% x 6.5b(a) \div 100=0.225 bar
```

