

To Establishing a Partial Pressure use % x AP ÷ 100 (Daltons Law)

• A diver at a depth of 78 msw breathes a 6/94 heliox mix. What is the ppO₂?

Absolute Pressure at 78 msw = 8.8 bar(a) Humans are always involved... so Pressure will always be absolute

Therefore Partial Pressure = $6\% \times 8.8b(a) \div 100 = 0.528 bar(a)$

Very often we express pp in millibars.

To find the mbar multiply the bar by 1000

 $= 0.528 \text{ bar(a)} \times 1000 = 528 \text{ mbar}$

To Establishing a Partial Pressure use % x AP ÷ 100 (Daltons Law)

• A diver at a depth of 300 fsw and breathing a 5/94 heliox mix. What is the ppO₂?

Absolute Pressure	=	Depth + 1 ata ÷	33
	=	300 + 1 ata ÷ 33	= 10.09 ata
Decimalise the %	=	5% ÷ 100	= 0.05
Therefore Partial Pressure	=	10.09 x 0.05	= 0.505 AT

• What is the ppO_2 in air at 97ft ?

97ft +. 1ATA ÷ 33ft = 3.939 ATA

3.939 x 21% ÷ 100 (alternatively just use 3.939 x 0.21)

= 0.827 ATA

 A chamber is at 90 msw and has a pO₂ of 400 mbar. If the chamber is vented to 35 msw what will be the % O₂ and pO₂?

 O_2 remains the same ie 4.0% p O_2

% x AP ÷ 100

 $4.0\% \times 4.5_{b(a)} \div 100$

= 0.180 bar(a)

