Physics Recap
 Calculating a Partial Pressure

Physics Recap calculating a Partial Pressure

```
To Establishing a Partial Pressure use \% x AP \(\div 100\) (Daltons Law)
```

- A diver at a depth of 78 msw breathes a $6 / 94$ heliox mix. What is the ppO_{2} ?

Absolute Pressure at $78 \mathrm{msw}=8.8 \mathrm{bar}(\mathrm{a})$ Humans are always involved... so Pressure will always be absolute

Therefore Partial Pressure $=6 \% \times 8.8 \mathrm{~b}(\mathrm{a}) \div 100=0.528$ bar(a)

Very often we express pp in millibars.

To find the mbar multiply the bar by 1000
$=0.528 \operatorname{bar}(\mathrm{a}) \times 1000 \quad=\quad 528 \mathrm{mbar}$

Physics Recap calculating a Partial Pressure

```
To Establishing a Partial Pressure use \% x AP \(\div 100\) (Daltons Law)
```

- A diver at a depth of 300 fsw and breathing a $5 / 94$ heliox mix. What is the ppO_{2} ?

Absolute Pressure	$=$ Depth +1 ata $\div 33$
	$=300+1$ ata $\div 33=10.09$ ata
Decimalise the $\%$	$=5 \% \div 100=0.05$
Therefore Partial Pressure	$=10.09 \times 0.05=\mathbf{0 . 5 0 5} \mathbf{A T}$

Physics Recap calculating a Partial Pressure

- What is the ppO_{2} in air at 97 ft ?

```
    97ft +. 1ATA }\div33\textrm{ft}=3.939 ATA
3.939 < 21% \div 100 (alternatively just use 3.939 x 0.21)
    = 0.827 ATA
```


Physics Recap calculating a Partial Pressure

- A chamber is at 90 msw and has a pO_{2} of 400 mbar. If the chamber is vented to 35 msw what will be the $\% \mathrm{O}_{2}$ and pO_{2} ?
O_{2} remains the same ie $4.0 \% \mathrm{pO}_{2}$
$\% \times \mathrm{AP} \div 100$
$4.0 \% \times 4.5 \mathrm{~b}(\mathrm{a}) \div 100$
$=0.180 \operatorname{bar}(\mathrm{a})$

