Physics Recap Available Gas

Physics Recap Available Gas

- What is the available gas of a super-quad $(64 \times 50 \mathrm{~L})$ pressurized to 200 bar ?

Free Gas Volume (FGV) = Floodable Volume (FV) X pressure (gauge)
Floodable Volume. $=64 \times 50 \mathrm{~L}=3200 \mathrm{~L}$

Free Gas Volume $=3200 \times 200=640,000$ L

We express FGV in M^{3} so \div by 1000
$640,000 \div 1000=640 \mathrm{~m}^{\mathbf{3}}$

It is very. Important to remember that you will not actually have $640 \mathrm{~m}^{3}$ available to pressurize. In reality if you are providing this gas to 200 m of depth (20bar) you would have to compensate for the depth and the working pressure to deliver it. Therefore may only have 160 bar actually available.

Physics Recap Available Gas

- A chamber has a floodable volume of $26 \mathrm{~m}^{3}$. How much gas is required to pressurise it to 120 m ?

Remember to calculate Chamber FGV in GAUGE, not ABSOLUTE pressure.

Gauge pressure	$=120 \div 10=12 \operatorname{bar}(\mathrm{~g})$
	$=\mathrm{FV} \times \mathrm{P}(\mathrm{g})$
	$=26 \mathrm{~m}^{3} \times 12 \operatorname{bar}(\mathrm{~g})$
	$=312 \mathrm{~m}^{3}$

Physics Recap Avalable Gas

- How much gas is required to pressurise a $140 \mathrm{ft}^{3}$ bell to 492 feet?
$140 \times 492 \div 33$
$=2087 \mathrm{ft}^{3}$

Physics Recap Available Gas

- Calculate the volume of gas used to pressurise a $32 \mathrm{~m}^{3}$ DDC to a depth of 170 msw .

$$
\begin{aligned}
& \text { FGV }=\mathrm{FV} \times \mathrm{P}(\mathrm{P}=\mathrm{msw} \div 10) \\
& \\
& 32 \mathrm{~m}^{3} \times(170 \div 10) \\
& =32 \mathrm{~m}^{3} \times 17 \operatorname{bar}(\mathrm{~g}) \\
& =544 \mathrm{~m}^{3}
\end{aligned}
$$

- If the $544 \mathrm{~m}^{3}$ came from a 64 cylinder (50L) super quad which had a pressure of 220 bar, what will the final pressure be?

$$
\begin{aligned}
\text { FGV } & =\text { FV } \times \text { P } \\
\text { So FV } & =64 \times 50 \div 1000 \quad=3.2 \mathrm{~m}^{3}
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \text { FGV }=3.2 \mathrm{~m}^{3} \times 220 \operatorname{bar}(\mathrm{~g})=704 \mathrm{~m}^{3} \\
& 704 \mathrm{~m}^{3}-544 \mathrm{~m}^{3} \\
& \mathrm{FGV} \div \mathrm{FV}=\mathrm{P} \text { so } \\
& 160 \mathrm{~m}^{3} \div 3.2 \mathrm{~m}^{3} \\
& =50 \operatorname{bar}(\mathrm{~g})
\end{aligned}
$$

Physics Recap Available Gas

- A gas quad has 950 L cylinders. If the quad is filled to 183 bar, how much gas would it contain?

$$
\begin{aligned}
9 \times 50 \mathrm{~L} & =450 \mathrm{~L} \\
450 \div 1000 & =0.45 \mathrm{~m}^{3} \\
0.45 \mathrm{~m}^{3} \times 183 \operatorname{bar}(\mathrm{~g}) & \\
& =82 \mathrm{~m}^{3}
\end{aligned}
$$

Physics Recap Avalable Gas

- Calculate the volume of gas used to pressurise a $24 \mathrm{~m}^{3}$ DDC and a $4.2 \mathrm{~m}^{3}$ bell to a depth of 106 msw .

$$
\begin{aligned}
& \text { FGV }=F V \times P \\
& \text { FV }=24 \mathrm{~m}^{3}+4.2 \mathrm{~m}^{3}=28.2 \mathrm{~m}^{3} \\
& \text { so } F G V=28.2 \mathrm{~m}^{3} \times 10.6 \text { bar(g) }
\end{aligned}
$$

$$
=299 \mathrm{~m}^{3}
$$

Daily Recap

1. How much pressure will be left in a superquad (64×50 litre) used to pressurise a complex with a total volume of $55 \mathrm{~m}^{3}$ to a depth of 75 msw if the initial pressure is 200 bar?
Pressure (gauge) \times F.V. So $7.5 \mathrm{~b}(\mathrm{~g}) \times 55 \mathrm{~m}^{3}=412.5 \mathrm{~m}^{3}$
F.V. of Superquad $=64 \times 50$ Litres $\div 1000=3.2 \mathrm{~m}^{3}$
Pressure drop $=412.5 \mathrm{~m}^{3}$ used $\div 3.2 \mathrm{~m}^{3}=128.9 \mathrm{bar}(\mathrm{g})$
Pressure remaining $=200 \mathrm{~b}(\mathrm{~g})-128.9 \mathrm{~b}(\mathrm{~g})=71.1 \mathrm{bar}(\mathrm{g})$
